## Mark scheme - Atomic Structure and Isotopes

| Question |  |  | Answer/Indicative content |  |
| :---: | :--- | :--- | :--- | :--- |




|  |  |  | Mark vertically: <br> protons AND neutrons $\checkmark$ electrons $\checkmark$ |  | Examiner's Comments <br> This straightforward question was generally well answered. Some candidates completed the table for atoms rather than $1+$ ions, with 12, rather than 11 electrons. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ii | FIRST CHECK THE ANSWER ON THE ANSWER LINE <br> If answer = $\mathbf{2 4 . 3 2}$ award $\mathbf{2}$ marks $\frac{(24 \times 78.99)+(25 \times 10.00)+(26 \times 11.01)}{100}$ <br> OR 24.320 OR 24.3202 , $=24.32 \text { (to } 2 \mathrm{DP}) \checkmark$ | 2 | ALLOW ECF for a correct calculation to 2 DP if: <br> - \%s have been used with wrong isotopes ONCE <br> OR <br> - decimal places for ONE \% have been transposed <br> Examiner's Comments <br> This stock calculation proved to be one of the easiest questions on the paper. When an error was seen, it was inevitably for not showing the answer to two decimal places. |
|  |  |  | Total | 4 |  |
| 5 | a |  | Similarities: <br> (Same) number of protons AND electrons $\checkmark$ <br> Differences: (Different) number of neutrons $\checkmark$ | 2 | ALLOW same electron configuration <br> ALLOW 'amount' for 'number' <br> IGNORE different masses/mass numbers (Question asks for atomic structures) <br> Examiner's Comments <br> Most candidates identified that different isotopes had the same number of protons but then omitted electrons. The different number of neutrons was usually seen although sometimes atomic mass was shown instead. |
|  | b |  | FIRST CHECK ANSWER ON THE ANSWER LINE If answer = $\mathbf{6 3 . 6 2}$ award $\mathbf{2}$ marks | 2 |  |



|  |  |  |  | standard form For ECF, $A_{r}$ must have been used for $n(\mathrm{Cu})$ <br> Common errors <br> Using 63.62: <br> $3.984 \times 10^{22} \quad 1$ mark (SF) <br> $4.73 \times 10^{22} \quad 1$ mark (ECF: omitting 0.840) <br> Using 63.5: <br> Examiner's Comments <br> This part was generally well answered with most candidates processing the data correctly. Candidates sometimes failed to consider $84 \%$ or rounded incorrectly in places. <br> Answer $=3.97 \times 10^{22}$ atoms |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 6 |  |
| 6 | i | M1 <br> The (weighted) mean mass of an atom (of an element) $\checkmark$ <br> M2 <br> Compared with $1 / 11_{\text {th }}$ (the mass) $\checkmark$ <br> M3 <br> Of (one atom of) carbon-12 $\checkmark$ | 3 | ALLOW 'average' for 'mean' ALLOW 'mean mass of isotopes' but DO NOT ALLOW 'mean mass of isotope' (singular) <br> DO NOT ALLOW 'mean mass of an element' <br> For M2 and M3 <br> ALLOW compared with the mass of carbon12 which is 12 <br> ALLOW for three marks <br> Mass of one mole of atoms <br> Compared to $1 / 12^{\text {th }}$ <br> (mass of) one mole OR 12 g of carbon-12 <br> ALLOW for three marks <br> Mass of one mole of atoms <br> $1 / 12^{\text {th }}$ (mass of) one mole OR 12 g of carbon-12 <br> Examiner's Comments <br> This commonly asked for definition was well answered by all. |




|  |  |  |  | chemical properties (ie because they have an identical numbers of electrons in the outer shell) was not always understood. Weaker candidates struggled and gave answers referring to the number of protons remaining the same. Even slightly improved answers referring to the total number of electrons remaining the same did not deliver the required level of detail. |
| :---: | :---: | :---: | :---: | :---: |
|  | iii | 51p 70n 51e $\checkmark$ | 1 | Examiner's Comments <br> This straightforward question saw virtually every candidate secure this mark. |
|  | i | The (weighted) mean mass of an atom (of an element) <br> OR <br> The (weighted) average mass of an atom (of an element) $\checkmark$ <br> compared with $1 / 12$ th (the mass) $\checkmark$ <br> of (one atom of) carbon-12 $\checkmark$ | 3 | ALLOW average atomic mass <br> DO NOT ALLOW mean mass of an element <br> ALLOW mean mass of isotopes OR average mass of isotopes <br> DO NOT ALLOW the singular 'isotope' <br> For second AND third marking points <br> ALLOW compared with (the mass of) <br> carbon-12 which is 12 <br> For three marks; <br> ALLOW mass of one mole of atoms compared to 1 / 12th <br> (mass of) one mole OR 12 g of carbon <br> OR <br> ALLOW <br> mass of one mole of atoms <br> 1/12th mass of one mole OR 12 g of carbon-12 <br> Examiner's Comments <br> This familiar recall question was well answered by all candidates. In the past there have been problems with weaker candidates omitting reference to average or mean mass, or muddling comparisons by referring to a single atom of the element and then a mole of carbon-12. On this occasion, however, such errors were rare and the answers seen were extremely strong. |
|  | ii | $123 \sqrt{ }$ | 1 | ALLOW ${ }^{123} \mathrm{Sb}$ OR Sb-123 OR antimony- <br> 123 <br> ALLOW 123.0 <br> IGNORE working <br> Examiner's Comments <br> This question analysed the methodology of determining relative atomic mass in a more |

### 2.1.1 Atomic Structure and Isotopes

|  |  |  |  | unusual way compared to the normal calculation from data about the constituent isotopes. As a result those candidates who had simply committed a method to memory without real understanding of what they were doing found themselves somewhat exposed here and consequently this question proved to be challenging for many. Stronger candidates scored well, however. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 7 |  |
| 11 |  | $\begin{equation*} \frac{(85.00 \times 72.17)+(87.00 \times 27.83)}{2} \tag{1} \end{equation*}$ $\begin{equation*} \text { = } 85.56 \text { (to } 2 \text { d.p.) } \tag{1} \end{equation*}$ | 2 |  |
|  |  | Rubidium OR Rb | 1 |  |
|  |  | Total | 3 |  |
| 12 | a | 63 p 90 n 60 e | 1 |  |
|  | b | $\begin{aligned} & 2(1) \\ & 2(1) \\ & 18(1) \end{aligned}$ | 3 |  |
|  |  | Total | 4 |  |

